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The nonlocal shear viscosity 7/(t) of a classical one-component plasma is 
shown to have an oscillatory long-time tail. This result is obtained on the 
basis of a microscopic theory which does not rely on expansions in a small 
parameter such as the plasma expansion parameter. Our major approxima- 
tion is the restriction to the coupling of two hydrodynamic propagators in 
the computation of the long-time behavior of the transport matrix. The 
Coulomb divergence is correctly accounted for, while the nonanalyticities 
of both the plasma parameter and gradient expansions are discussed at the 
level of the kinetic as well as the hydrodynamic equations. 

KEY W O R D S  : Plasma kinetic theory ; long-time tails ; Coulomb systems ; 
shear viscosity ; mode  coup l ing  ; corre lat ion funct ions.  

1.  I N T R O D U C T I O N  

The discovery by Alder  and Wainwright  (1> in 1970 of  strong computer  evi- 
dence for the existence o f  a nonexponential  decay of  the velocity correlation 
funct ion of  a system of  hard  spheres has led to one o f  the most  spectacular 
developments o f  recent years in the kinetic theory o f  neutral particles. All 
these developments are based on the recognition of  the importance o f  
hydrodynamic transport o f  fluctuations for the study of  phenomena  taking 
place over large space and time intervals. They also provide a coherent  view of  
such related results as the nonexistence of  naive density expansions, the 
nonexponential  decay of  the nonlocal  t ransport  coefficients, and, last but  not  
least, the nonexistence of  hydrodynamic  equations at Burnett  or super- 
Burnett  order. Similar results have been obtained for a variety o f  systems of  
various dimensionality by a variety o f  methods,  ranging f rom purely 
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phenomenological to "exact" kinetic theoretical ones. An extensive list of 
references can be found in a recent review article by Pomeau and R6sibois, (2~ 
to which we will frequently refer. 

1.1. The One-Component  Plasma 

In this paper we turn our attention to the classical plasma, a system 
which remained outside the scope of the previous developments, which were 
restricted to the case of short-range forces. In the presence of Coulomb forces 
a number of basic results from the kinetic theory of neutral particles have to 
be reconsidered, as Baus has already pointed out. ~3-5~ As the simplest of such 
Coulomb systems, we will consider here the classical one-component plasma, 
i.e., a one-species system of charged point particles with pure Coulomb 
interactions embedded in an inert background of opposite charge ensuring 
overall electroneutrality. Very fortunately, an impressive amount of results 
from molecular dynamics for this system has been obtained recently by 
Hansen et  al. ~6-~~ Some of these results can be explained on the basis of the 
theory presented below, while others still wait for a microscopic explanation 
and appear to be very challenging. 

The scope of the theory to be constructed is dictated by two preliminary 
observations. First, all the phenomena we have in view manifest themselves 
in the hydrodynamic correlation functions, i.e., the space-time equilibrium 
correlation functions of the conserved densities, such as the number density, 
the momentum density, and the energy density. Next, these phenomena do 
not depend on the smallness of the density n, coupling constant e 2, or plasma 
expansion parameter h = kDa/n [here kD = (4rre2nfi) 1/~ is the Debye wave 
vector of a one-component plasma of particles of charge e, number density n, 
and equilibrium temperatur~ T, and p = (KT)-1, with • Boltzmann's con- 
stant]. What we really need is thus a fairly general theory for the hydrodynamic 
correlation functions of a one-component plasma. 

1.2. The Coulomb Divergence, the Gradient Expansion, and 
the Local Equilibrium Problem 

One is immediately tempted to gain some information about these 
correlation functions from the Landau-Placzek theory, which proved 
extremely useful in the neutral particle case. ~11,12~ However, the local equi- 
librium distribution as well as the hydrodynamic equations used in these 
theories emerged from a small gradient expansion of some more basic kinetic 
equation, and such a small gradient expansion of the kinetic equation does 
not exist in the plasma case. Indeed, an essential ingredient of any kinetic 
equation describing a plasma is the so-called Vlasov term eE(r, t). 
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(~/~p)f(r, p, t), where E(r, t) is the self-consistent electric field at point r and 
time t, and f is the one-particle distribution of particles of momentum p. 
Omitting for the moment unnecessary features, we can write 

..~ V f dr' V(r - r ')f(r ') E(r) 

= f dr' V(r') Vf(r - r') = f dr' V(r ')Vf(r) + O(V 2) 

When V(r) is the Coulomb potential, the integral f dr' V(r') does not exist 

and the gradient expansion breaks down. This rough argument can be turned 
around or refined, e.g., the potential can be renormalized into the Ornstein- 
Zernike direct correlation function, but the Coulomb divergence will persist. (4~ 
It simply expresses the basic fact that in the presence of the long-range 
Coulomb forces the interaction is basically nonlocal. The zeroth-order, local 
equilibrium distribution cannot be attained and the standard Chapman- 
Enskog derivation of the hydrodynamic equations fails. Does this mean that 
Landau-Placzek theories are completely useless in the plasma context ? We 
think there are at least two situations where they can give reasonable indica- 
tions. First, if we restrict ourselves to disturbances or fluctuations which do 
not disturb the electroneutrality over appreciable distances, then the Vlasov 
term, whose Fourier transform is proportional to the charge density, can be 
dominated by the collision term and the local equilibrium distribution should 
yield a reasonable first approximation. In fact, although usually not stated 
explicitly, it is this situation which is termed plasma hydrodynamics in the 
literature. (la~ Such a subsidiary condition on the type of disturbances one 
considers can be realized in a two-component plasma (however, are they 
maintained in time .9), but not in a one-component plasma because here the 
density fluctuation is always proportional to the charge fluctuation. Next, for 
the local equilibrium state to represent a reasonable approximation for a one- 
component plasma one should consider small but finite wave vectors (~  
gradients) and consider situations where the plasma expansion parameter is 
large enough for the collision term still to dominate the Vlasov term. How- 
ever, such an accumulation of subsidiary conditions leads us, in our opinion, 
too far away from what linearized hydrodynamics really is, namely a theory 
which, after a transient time, becomes asymptotically exact for vanishingly 
small wave vectors for any system. For neutral particle systems detailed 
proofs of this statement are now available in the literature. (14,~5> For the one- 
component plasma a similar result has been published recently by Baus, (~> 
while a separate proof as needed for a two-component plasma is now under- 
way. (5> So, in order to cope with the fairly general situations we have in mind, 
we will develop the microscopic approach of Ref. 4 within the present 
context; as we will show, this can be done quite simply. 
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In Section 2 we summarize our previous results. The developments 
necessary to tackle the problem of the long-time behavior of the nonlocal 
transport coefficients of a one-component plasma are given in Section 3 and 
are applied to the case of the shear viscosity in Section 4. The major implica- 
tions of the results obtained are reviewed in Section 5. 

2. KINETIC T H E O R Y  FOR THE C O R R E L A T I O N  F U N C T I O N S  

We now summarize some of the results on the hydrodynamic correlation 
functions obtained elsewhere. (4~ As they will be used extensively below, we 
urge the reader to consult Ref. 4 for the details. 

2.1. T w o - P o i n t  Corre lat ion Function 

Our starting point will be the following e x a c t  kinetic equation obeyed by 
the two-point correlation function S(I, 2; t - t') = (Sf(1, t) $f(2, t ' ) ) ,  

- (r~, p=), a = 1, 2, of the equilibrium fluctuations 8f = f - ( f )  of the 
phase-space density f(1, t) = Z~= 1 8(rl - xt(t)) 8(pl - pj(t)): 

- j" dp3 Y~(kz; plp3)S(kz; PsP2) = iS ( k ,  t = O; PIP2) (1) zS(kz ~ PlP2) 

where S(kz; PzP2) is the Fourier-Laplace transform of S(1, 2; t - t'): 

S ( k z  ; PIP2) 

= f  d ( r l - r 2 ) f o ~ ~  - t ' )  

x {exp[-ik.(r~ - r2) + iz( t  - t')]}S(1, 2; t - t'); Im z > 0 

(2) 

The basic kinetic equation (1) can be obtained directly from the Liouville 
equation obeyed by f(1, t) through a few algebraic steps originally developed 
by Akcasu and Duderstadt as a straightforward application of Mori's method 
to f(1, t). Explicit derivations of Eq. (1) can be found in the literature. (~6,1~4> 
All known l inear i zed  kinetic equations can be obtained as particular cases of 
(1). The memory function Z in (1) can be split into three distinct parts, 
y~ = E0 + y s + ~c, a free-streaming term E~ PIP2) = k.v~ ~(p~ - P2) with 
p~ = mv~, a static self-consistent field term E*(k;pl)=-k.vlc(k)cp(p~),  
and a nonlocal (linearized) collision operator EC(kz; P~P2) whose explicit 
expression has been given in Ref. 4. Here ~(p) = (~/2~m) a/2 exp(-fip~/2m) is 
the Maxwellian and c(k) is the Ornstein-Zernike direct correlation function. 
At k = 0, c(k) is singular ~> because as k - ->  O, c(k)  ,.~ O ( k  -2)  and conse- 
quently the small-k expansion of the kinetic equation (1) does not exist, as 
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already stated in the introduction. To avoid this difficulty we first project 
Eq. (1) onto the subspace spanned by the hydrodynamic moments, which can 
be considered to be the five first members of a momentum space basis 
(i[, i = 1,..., 5. 

2.2. H y d r o d y n a m i c  Corre la t ion  Funct ions 

The kinetic equation (1) is now transformed into a finite set of algebraic 
equations for the hydrodynamic correlation functions G~j(kz) = {i]S(nq))- l l j )  

5 

[z 3~s - f2,i(kz)]GJ~'(kz) = ia~ (i, i') = (1 ..... 5) (3) 
j = l  

Here G~ = (ilS(k, t = 0)(nq~)-~[j) are static correlation functions, which 
can easily be obtained (4) from the known initial condition S(k, t = 0; PlP2) 
appearing in the rhs of (1). Solving the algebraic equations (3), we obtain 
exact expressions for the hydrodynamic correlation functions G~j(kz) in terms 
of G~ and the transport matrix, whose expression is given below in (11). 
The contributions to G~j(k, t) can be split unambiguously as Gu(k, t ) =  
G~(k, t) + G,-(k, t), where G~j(k, t) denotes the contributions to G~j(k, t) that 
originate from the roots z = z(k) of the dispersion relation, detlz - O(kz)l = 
0, whose imaginary part (damping rate) remains finite as k goes to zero 
(relaxation modes), while G~(kt) originates from the so-called hydrodynamic 
modes, which have a damping rate of O(k 2) and hence vanish with k. For 
small k, G~j can be approximated by G*=j after a transient time of O(k-2). 
Moreover, for small k, G~(kt) can be computed exactly even in the Coulomb 
case, because, as shown elsewhere, (~) the dispersion relation admits, contrary 
to the kinetic equation (1), a well-defined small-k expansion. 

2.3. H y d r o d y n a m i c  Limit  Behavior  

Some of the results have already been given in Ref. 4. For later use we 
complete this list here. When i and j run through the hydrodynamic states 
(density n, longitudinal momentum l, transverse momentum tl, t2, and excess 
kinetic energy E) we obtain, using the notation of Ref. 4, for G~(k, t), 

G~n.(k, t) = (k2/kD 2) cos[c%(k)t] exp[-�89 (4) 

G~(k, t) = cos[%(k)t] exp(-�89 (5) 

G~(k, t) = (ev~ exp(-k2Drt) (6) 

G~(k, t) = Gg(k, t) = -i(k/kD) sin[oJp(k)t] exp(-�89 (7) 

k + kDz,(0, + oJ~) 
G~,( , t) = G~(k, t) = "7" ~ 2~o.[1-~ ~ _~)p)] exp[-iz .(k)t]  (8) 
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= G,~(k,t) = - t ~ v 0  G~,(k, t) u -- - 1 exp ( - k2DTt )  

~, / k 2 D,,(O, + o~p) 

x exp[ - i z~ (k ) t ]  (9) 

and 

6,oj(k, t) = 6j,o(k, t) = *j , , .Gl(k,  t) (10a) 

G~(k, t) = exp( -kZD•  (10b) 

where in order to avoid confusion with the time variable we have slightly 
departed from the notation used in Ref. 4: G• = Gtt and D• = -  D t . In Eqs. 
(4)-(10) we only wrote down, as one should, the dominant contribution of the 
small-k expansion. Let us now briefly recall the physical contents of Eqs. 
(4)-(10). The time dependence of the hydrodynamic correlation functions 
Gg(k, t) is completely determined by the five hydrodynamic or long-wavelength 
modes of our system: two transverse shear modes zt~ = - i k2D•  (a = 1, 2), 
one thermal mode zr = - i k 2 D r ,  and two plasma modes z ~ ( k ) =  
+ oJ~(k) - �89 o~(k) = oJv(1 + �89 No sound modes appear in the one- 
component plasma because the density fluctuations are identical to the charge 
density fluctuations of this system, which themselves are controlled by Cou- 
lomb phenomena. The high-frequency plasma modes are only weakly 
coupled to the low-frequency thermal mode, and hence the thermal diffusi- 
tivity Dr differs by a factor cv/cv, the specific heat ratio, from its neutral fluid 
analog. The (collisional) damping rate P and the dispersion coefficient of the 
plasma frequency 7 require a knowledge of the non-Markovian or finite- 
frequency collision operator and hence cannot be expressed in terms of (zero- 
frequency) transport coefficients. This clearly is a supplementary reason why, 
as stated in the introduction, local-equilibrium concepts cannot be used here. 
This departure from the usual (neutral fluid) hydrodynamic behavior is even 
reinforced if we look at the strengths with which these modes appear in the 
correlation functions (4)-(10). We observe, for example, that (4), (5), and (7) 
are completely dominated by the plasma modes, while (6) is dominated by 
the thermal mode. The strength of the plasma mode in (8) and (9) is non- 
Markovian, hence nonthermodynamic, in nature. Finally, those correlation 
functions involving the excess kinetic energy E, and not the total energy, have 
an initial value Gg(k, t = 0) which differs from the exact one G~j(k, t = O) 
because part of the kinetic energy fluctuations are not properly described by 
a hydrodynamic theory. (17'4) 

As they only involve the small-k limit, the above results can be termed 
"exact." 
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The molecular dynamics results of Hansen e t  al. (6-~~ do contain informa- 
tion about Ga of Eq. (10b) and about the related functions G,,, G~z, and G,g 
of Eqs. (4), (5), and (7). Although no detailed comparison has been undertaken, 
we agree on the most striking features(8,1~ (1) the absence of a thermal 
Rayleigh peak in Gf, and (2) the failure of a mean-field theory as well as a 
Landau-Placzek theory to reproduce correctly the location [o~p(k)] and 
width (k2F) of the plasmon peaks, especially as one varies the plasma expan- 
sion parameter/2s~ 

3. KINETIC T H E O R Y  OF THE L O N G - T I M E  B E H A V I O R  OF 
THE T R A N S P O R T  M A T R I X  

The long-wavelength modes that build up the hydrodynamic correlation 
functions G~(k, t) of Eqs. (4)-(10) have been given detailed expression in 
Ref. 4 in terms of the transport matrix [2~j(kz) of Eq. (3). This nomenclature is 
based on the fact that the transport coefficients which appear in these modes 
are obtained as limits of f~j(kz) for vanishing k and z. From the definition of 
D~j(kz) we can thus define transport coefficients n o n l o c a l  in space and time, 
D~j(rt), which will appear as integrands in the definition of the usual or l o c a l  

transport coefficients. The unexpectedly slow, nonexponential decay of these 
nonlocal transport coefficients for long times and large space intervals in the 
case of neutral gases (2) has led us to investigate the same problem for the one- 
component plasma. In fact the computer results of Hansen e t  al. ~8) show that 
there is a slow nonexponential and oscillatory decay for the nonlocal (in time) 
self-diffusion coefficient, On the basis of a mode-mode coupling theory ~2) one 
expects a similar behavior for the collective (multiparticle) motions as for the 
self-motions investigated by Hansen e t  al. ~8~ Detailed microscopic theories 
have been obtained independently by Gould and Mazenko for the case of the 
self-motions, and by the present authors for the case of the collective 
motions. Brief accounts of both theories have been reported elsewhere/18,19~ 

To set up a general microscopic theory of the asymptotic behavior of the 
nonlocal transport matrix f~j(r, t) we have to detail somewhat the structure 
of the nonlocal collision operator ZC(k, z) appearing in the kinetic equation 
(l). Indeed, it is this operator which determines the behavior of the transport 
matrix ~ j  according to the following relation derived in Ref. 4, whose 
notation we adopt here: 

~),j(kz) = ~ i [ Z ( k z ) l j )  + (i][~~ + ZC(kz)]~){z- ~)[,Z~ 

+ ,ZC(kz)] ~)}- 1 ~)[,Z~ + ,~C(kz)]]j) (11) 

where ~) L I - P projects out the hydrodynamic states (P = ~=1 ]J)(J]) 
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and Z denotes the operator with elements Y(pp') such that ( f l 2 [ g )  = 

f dp dp'f(p)Z(pp')~(p')g(p'). According to Eq. (11) the transport matrix f2 o 
naturally splits into a direct part and an indirect part, respectively the first 
and last terms in the rhs of Eq. (11) (we follow here the nomenclature of 
Ref. 14). 

3.1. The Nonlocal  Collision Operator  

The nonlocal collision operator (or memory function) ZC(kz; pp') can 
be written in terms of the N-body Liouville operator [see Eq. (2.20d) of Ref. 4] 
as originally done by Akcasu and Duderstadt, ~16'z~) or alternatively in terms 
of a four-point correlation function as done, for example, by Mazenko ~2~ 
and Boley3 TM We will follow the latter procedure, in which case we can write ~2~ 
Z c in terms of two-body dynamics: 

iY~(1, 2; t)ng(2) = f dl'd2' L,(ll')LI(22')C(ll', 22'; t) (12) 

where 1 - (rl, Pl), dl = dr~ dpl, etc., and LI(11') is the two-body interaction 
operator: 

a V ( r z _ r ~ , ) . ( O  0 )  Lx(11') = ar~ apl a~, (13) 

for an interaction potential V(r). The four-point correlation function 
C(11', 22') in Eq. (12) is not the four-point extension, say S(11', 22'), of our 
two-point correlation function S(12) of Eq. (1) but, as shown elsewhere, ~2~ 
a contracted correlation function. When C is split, by means of a cumulant 
expansion, ~2~ into a disconnected part CD and a connected part Co, C = 
CD + Co, the disconnected part is seen to consist solely of the ordinary 
two-point correlation functions governed by Eq. (1): 

CoO 1', 22'; t) = S(12, t)S(1'2', t) + S(12', t)S(l '2,  t) (14) 

We now substitute this separation of C into Eq. (12) and accordingly 
split the collision operator Z c into a disconnected part Z5 and a connected 
part Eb: E c =  Zg + Y~. The disconnected contribution to the collision 
operator can then be written explicitly after integrating by parts the collision 
term of Eq. (1): 

Z~(k, t; p ~ p 2 ) = - i f  ~ f dpv dpz Vtl'~l 

x [ S ( k  - 1, t; p~p2,)S(I, t; Pvp2)Vl-k(i -- k)',~2 

- S(k - !, t; p~p2)S(/, t; pvp2,)Vll.82][n~(2)] ~ 
(15) 
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where Vk = 4rre2/k 2 denotes the Fourier transform of the Coulomb potential 
(e is the charge on each particle), ~1 ---- ~/OPl, etc. This is all we need to know 
about the general structure of the collision operator Zc. 

3.2. The Basic Approx imat ion  

The asymptotic properties of the transport matrix f~j(kz) are seen from 
Eq. (11) to be determined by the asymptotic properties of the collision 
operator EC(kz) (cf. also the discussion of Section 3.4). With respect to this, 
the separation of the collision operator E c into a disconnected and a connected 
part, Ec = Eg + E~, will play an important role. Indeed, comparing (12) 
and (14), we see that in the disconnected part Zg the colliding particles 
propagate thrc, ugh the medium independently of each other with the full 
two-point propagator S(kt; pp'). As noted in Section 2, part of this propaga- 
tion will proceed via the long-lived hydrodynamic fluctuations and hence Eg 
will contain a contribution corresponding to the coupling between two 
hydrodynamic modes. In the connected part E~ we will find instead those 
contributions to ~ in which there are intermediate recollisions between the 
colliding particles. If, as has been shown recently for the neutral gas case, ~2~ 
the two-mode coupling contributions dominate the long-time behavior of 
Y.C(kt), then we can leave the analysis of the connected part Z~ as such, only 
assuming it has well-defined limiting values. Moreover, since the connected 
contributions are additive with respect to ZS, they can, if necessary, always 
be added in a later stage. Here our basic assumption will then be that the 
leading longtime behavior of Z~(kt) is due solely to the disconnected part 
Eg(kt) displayed in Eq. (15). This is the main approximation in the present 
theory. 

It may be of some interest here to add to the above a remark on the 
meaning of ZS. Although we do not need to expand the kinetic equation (1) 
with respect to the plasma parameter, it could be useful to make some contact 
between the present theory and the Balescu-Guernsey-Lenard (BGL) kinetic 
equation, which serves as a reference equation in the kinetic theory of plas- 
masJ 13~ This gap is bridged precisely by ZS. Indeed, if we compute the two- 
point correlation functions which appear in ~ [(15)] to zeroth order in the 
plasma expansion parameter, i.e., use the Vlasov approximation for 
S(kt; pp'), and substitute this result for y c into Eq. (1), we obtain a closed 
kinetic equation. If we consider, moreover, space-independent phenomena 
(k = 0) and use the Markovian approximation [Z~(0z)_~ Z~(00)] for the 
collision operator, then this approximate kinetic equation reduces precisely 
to the linearized BGL equation. One can even go one step further and remove 
the bare Coulomb potential completely from Eq. (15) in favor of equilibrium 
correlation functions by using Mazenko's renormalized theory. ~2~ This will 
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modify the BGL theory considerably at large wave vectors. (6) For instance, 
the small-distance divergence of the BGL operator can be removed in this 
way. These interesting questions will be considered in detail elsewhere. ~23) 
Here we are only interested in the long-wavelength behavior, for which the 
renormalized version of the present theory is not needed. (6) The purpose of 
the present remark is only to emphasize that Zg(kz) of Eq. (15) already 
represents a major extension of the linearized BGL collision operator to 
finite values of k and z as well as to finite values of the plasma expansion 
parameter. 

3.3. The Singular Part of the Collision Operator  

As stated above, the leading long-time behavior of Z~ will come from 
that part of Z~(kt), Eq. (15), in which the intermediate propagation proceeds 
through hydrodynamics. To put in evidence this part of Z~, we will expand 
the intermediate propagators of Eq. (15), S(I t ;pp ' ) ,  into a complete ortho- 
normalized set of momentum functions u~(p)/a~ (at being a normalization 
constant), the first five of which are the hydrodynamic states (see Ref. 4). We 
can then rewrite Eq. (15) as follows: 

= - i f  
dl 

~ [At(l, t)G,,(k - l, t)G,j(l ,  r - k, 2) 

- &(1, 1)G~j(k - 1, t)G,~(l, t )Z,( l ,  2)] (16) 

where the correlation functions Gty(k, t) have been defined in Section 2 except 
that here the state indices i and j run through the infinite set and not just 
through the first five hydrodynamic states. Furthermore, in Eq. (16) we have 
put A~(/, 1 ) =  a~Vll.~l{[u~(pl)/ai]nq)(1)}, where a~ is the normalization 
constant of the density state (4) (a, 2 = n), whereas we can write .4~(I, 1) in 
operator form as .d~(I, 1) = a, Vl[U~(1)/a~]ncp(1)l.~l[nq~(1)] -1 (in this case Z5 
is an operator with respect to the momentum variable P2) or, alternatively, 
integrating by parts the kinetic equation (1), we can write .4~(/, 1 ) =  
- [n~o(1)] - 1A~(l, 1) (in which case Eg is a function, usually called the memory 
function). It is of some interest to factor out the/-integration in Eq. (16). To 
do this we introduce a set of three unit vectors %(k) (~ = 1, 2, 3), such that 
%(k).e~(k) = 3~r and e3(k) = k/lkl. We then write Eq. (16) compactly as 

ES(kt; PIP2) = E E A"(Pl)Z~B(kt)'df(P2) (17) 
t d  a,fl 

where the sum over c~ and/3 runs over the three polarizations (~,/3 = 1, 2, 3), 
whereas the sum over i and j runs over the infinite set of functions u~(p)/a~. 
Furthermore, in Eq. (17) we can put -4fl(P2) = -[nq~(2)]-~Aje(p2), with 

aj~(pz) = a,e,(k).~3z{[uj(pz)/aj]nqg(pl)} (18) 
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Finally the k, t dependence of Zg is contained in the following mode coupling 
integrals: 

f dl [e=(k).IViG,,~(k - l ,  t)G.s(l, t)c,(k).(l  - -  k)Vl-.~ Z~(kt)  = - i  

- ea(k)'lViG~s(k -- l, t)G..(I, t)eB(k).lVl] (19) 

To select now those contributions to Y.g that only contain hydrodynamic 
propagators we simply have to restrict the sum in (16) or (17) to the hydro- 
dynamic states (i and j )  = (1,..., 5). These contributions will be shown to be 
responsibl e for the slow decay (slower than exponential) of Z~(kt) as t --+ oo 
and k --+ 0. This then implies that Z~(kz) also reaches its limit value Y,~(k0) 
slowly as z -+ 0. Typically we have Z~(z) = Zc(0) + O(z 1/2) ifZ~(t) ~ O(t -3/2) 
as t --> oe. Hence, Z~(kz) will not be a regular function ofz  and k in the vicinity 
o fz  = 0 and k = 0. The straightforward expansion of Z~(kz) around its local 
limit ~(00) is thus singular. Henceforth we will thus split the full collision 
operator Z~(kz) into a regular part Z~ and a singular part Z~, E ~ = Z~ + Z~. 
The singular part is defined by the contributions of the hydrodynamic prop- 
agators to (17): 

5 3 

E~(kt; p~P2) --- ~ ~ A~a(p~)Z~B(kt).4jB(p2) (20) 
( t , J )  = I ( a , B )  = 1 

and it is Y~ that will play the central role in the following analysis. 

3.4. The Singular  Part  of  the  Transport  Mat r ix  

The basic quantity of interest to us is not the collision operator Z ~ but 
the transport matrix f~j of Eq. (11). According to the above, to study the 
long-time behavior of f2~s(kt) we will analyze in more detail the contribution 
of the singular part of the collision operator Z~, Eq. (20), to f2~ i. We there- 
fore also separate the transport matrix f2~j into a regular part f2~ and a 
singular part f2s., f2~j = f2~ + f2~. The regular part f2~ is given by an 
equation identical to Eq. (11) with Z replaced by Zg = Y. - Z~. The re- 
mainder will be called the singular part of the transport matrix: 

g2~(kz) = (i[ ,~(kz)[j)  + (ilZ~Q(z - Q ~ Q ) - I ~ I j )  

+ ( i]~,Q(z - O_ZO)-IO_Z~lj) 

+ <il~sO(z - QzQ)-~Q~YsIJ) 

+ <i]~R~)(z -- Q,~R~))-~)Z~Q(z - ~)~Q)-~O~RIj> (21) 
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Next we retain only those contributions to f2~ s that are linear in the singular 
S _ _  part Z}, say 3f~j, fZ~j - 8f2is + fisj, fis denoting the remainder. The terms 

of higher order in Z8 will be dominated by 3f2~j for z --> 0, as can be verified 
a posteriori. Finally, we also introduce a shorthand notation for 8f2~j: 

3f2~j(kz) = (i[Y.~(kz)]j> + (il~$(kz)lFj(kz)> 

+ (F,(kz)lZ~(kz)l j> + (F~(kz)lZ~(kz)[Fj(kz)> (22) 

where <F~(kz)] = (i]~RQ(z - Q2RO)-IQ, etc. In a few words, ~f2,j repre- 
sents those contributions to the transport matrix f2~. that are linear in the 
singular part of the collision operator ~ ,  which in turn represents those 
contributions to the disconnected collision operator Z~ [(15), (16)] that 
contain hydrodynamic propagators [Eq. (20)]. We are now ready to apply 
the general theory to a specific example. 

4. THE NONLOCAL SHEAR V ISCOSITY 

The theory of Section 3 provides us with a general scheme for the 
analysis of the feedback action of the hydrodynamic propagators of Section 2 
onto themselves. Here we will consider explicitly the case of the shear vis- 
cosity, for which we have announced the most important results else- 
where. ~19) The other transport phenomena will be considered in future work. 

4.1. The Nonlocal Transport  Equation 

The transverse momentum correlation function G , (kz )=  Gt~t=(kz) 
(c~ = 1, 2) is particularly simple because, for reasons of rotational invariance, 
Gx decouples from the remaining correlation functions and Eq. (3) becomes 
simply ~ 

f2 OtG• t) + i d .  a L(k, .)G• t - ~-) = 0 (23) 

with Gl(k, t = 0) = 1, where for a change we have transformed Eq. (3) back 
to the time variable. The transport matrix reduces here to a single element 
~)• - ~)t.t=, which because of momentum conservation can be written <4) in 
terms of a nonlocal shear viscosity 7/(kz) or shear diffusivity Dz(kz): 

f21(kz) = - ik 2 D• = - (ik2/nm)~(kz) (24) 

where nm is the mass density. As k vanishes, Eq. (23) reduces to 

f2 0tG• t) + (k2/nm) d-c ~(k = 0, ~-)G• t) = 0 (25) 
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and the  precise manner in which f~ dr ~/(0z) reaches its long-time limit 

~/= fo  dr ~7(0~') = ~7(0, z = 0) is the subject of the present section. In this 

limit Eq. (25) reduces to the transverse Navier-Stokes equation ~tG.L + 
(k~v/nm)G• = 0. To extract this information from the general expression 
of f~• [Eq. (11)], we separate ~ into a regular part f2, ~ and a singular part 
f2~_ and compute f~L according to the recipe of Section 3. 

4.2. The Singular Part of  the Shear Viscosity 

According to Eq. (22), ~f2• splits into four parts, which we now compute. 
From (18)-(20) we obtain for the rhs of Eq. (22) with i = j = t~ = t 

( tl'2~lt ) = - (a,4/ag2)z~, (26) 

( t l'2~lFt) = -(an~/ag~)(Z~ + Z~t)( tl [Ft) - (an~/2ma,agZ)E~,( tpZlFt) 

(27) 

(FtlY.~lt) = -(a ,~/ao~)(Z~ + Z[ t ) (g t] t l )  - (a,~/2ma,ao2)Zt, t , ( f t l tP ~) 

(28) 

- (a,6/4m2a,2ao2)(Ft] tp 2) ( tp  2 ]Ft)Zt,~ 

- (a,~/2ma,aoO(Ft] t l )  ( tp  2 ]F~)(Z~ t, + E~t~) 

- (a,~/2ma, ao2)(Ft]tp 2) (tl lFt)(YJ, tz + Y,~,~) (29) 

In Eqs. (26)-(29), Y~, F~, and Z~ B are all evaluated at the point k, z, whereas 
= l denotes the longitudinal polarization [cz(k) = k/Ikl] and ~ = t one of 

the transverse polarizations [ct(k ). ct(k ) = 0]. The new vectors (tl[ and (tp2[ 
which appear in Eqs. (26)-(29) are respectively defined as the direct products 
[ut(p)/ao] [ut(p)/ao] and [ut(p)/ao]p z, the as being the normalization constants ~ 
a~2= (u~]u~) with ag = ag~ for i = l, tx, t2. The various Z~ .B functions in 
(26)-(29) have been defined through Eq. (19). They have the appearance of 
mode-mode coupling integrals as introduced in the study of critical pheno- 
mena by, for example, Kawasaki324~ For instance, Zt,~ of Eq. (26) can be 
written explicitly, according to (19), as 

f e, :~'~(k, t) = - i  8 7  [c~(k).l]~V,(V~ - V~_k)a~( l ,  t ) C ~ ( k  - l, t) 

(30) 

Our next purpose will be to evaluate these mode coupling integrals explicitly 
in the limit of vanishing k. 
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4.3. The Long-Wavelength Limit 

In order to compute the long-time limit of ~(k = 0, t) and hence of the 
hydrodynamic transport equation (25), we have to evaluate (26)-(29) up to 
terms of O(k2). Here we have to take into account that, because of momentum 
conservation, the functions (Ftltl) and (Ftltp 2) in Eqs. (27)-(29) are already 
of O(k). In view of this we can rewrite Eqs. (26)-(29), keeping only terms of 
O(k2), as 

(t I~}lt) = - (a,'/aoZ)ik2Ii(z) (31) 

(/lY61F,) = - (a,S/ao2)(tl [Ft(kz))ikI2(z) (32) 

(FtJ~lt)  = - (a~ ~/ag 2)(Ft(kz)ltl)ikl~(z) (33) 

(f~[~ IF t) = - (a,6/ag2)(Ft(kz) [ tZ) (tl [ Ft(kz))ila(z) 

- (a,6/4m~a,2ag2)(Ft(kz)ltP 2) (tp2lFt(kz))il~(z) (34) 

Where we have introduced the following four mode coupling integrals 

f dl (r ' t) 11(0----- 

• ([k.~iGnn(1, t ) ] [ . (~ l  V 1 ) + ~  

f dl (e,.I)2(E.I)2IVt2G,,(I, t)G,,(1, t) (36) Iz(t) = 4 

f dl (t,.I)~(~.i)~I~V,~[G..(1 ' t)G,,(l, t) + G.M, t)G,.(1, t)] 18(0 = 4 

f dl (tel)2[1 _ 2([.i)2]12V2G,,(l, t)G• t) (37) + 2 ~--~ 

f ~ (r t)G..(1, t) - G..(l, t)G..(l, t)] (38) I,(t) 

In Eqs. (35)-(38) the unit vector orthogonal to k has been simply denoted 
c t - tt(k) and hence the angular integrations can be performed immediately. 
As far as the 1 dependence of the various correlation functions G~j(I, t) in 
(35)-(38) is concerned, we have summarized our knowledge of this in Section 
2.3. 

4.4. The Long-Time Limit 

According to Section 2, each of the hydrodynamic correlation functions 
G~s(l, t) in Eqs. (35)-(38) can be split into a hydrodynamic part G~(l, t) and a 
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nonhydrodynamic part G~j(I, t). The nonhydrodynamic part G~j is due to the 
relaxation modes, i.e., those modes whose damping rate remains finite as 1 
vanishes. Hence for vanishingly small 1 and t ~ 0(l-2) we can replace the 
G~,(1, t) functions of Eqs. (35)-(38) by the G~(l, t) of Eqs. (4)-(10). We will 
assume, moreover, that for large values of L G~j(1, t) rapidly tends to zero for 
large t. Concretely we will approximate 12(t) [Eq. (36)], for example, as 

f '  t)G~(1, t) (39) 
dl 

12(0 ,.~ 4 (~t.l) 2(f~.l)2lVl2G~,( l, 

where the prime indicates that the integration is restricted to values of l below 
some cutoff value 10. As it stands Eq. (39), and similar ones for (35)-(38), is 
the second physical assumption we make in the present theory. Using the 
expressions given in (4)-(10), we can easily evaluate the mode coupling 
integrals (35)-(38). For example, for 12(0 we obtain, according to (39), 

15rr kDn2fl 2 F'~ ( ~~ ) 12(0 = (Ft)- 3/2 ~o ] dx xZ(exp - x 2) sin 2~%t + x 2 

(4o) 

For large values of t the upper integration limit in (40) can be pushed to 
infinity with an exponentially small error. If we take this limit, we obtain (25~ 

fo | x2(exp x 2) sin(a + bx 2) � 8 8  (1 + sin(a + k tan-1 b2)-a/~ b) 

(41) 

and the mode coupling integrals (35)-(38) become 

Ii(t) = kg2a2(~kD2Ft)-3/2[1 + (1 + 32) -3/4 cos(2t%t + ~ tan -~ 3)] 

(42) 

I2(t) = -2ikg~a2(~rkD2rt)-3/2(1 + 82) -a/~ sin(2~%t + ~ tan -~ b) (43) 

Is(t) = 4c,2(~rkD2Ft)-3/2(1 + 82) -3/4 cos(2o, pt + 3 tan-a 3) 

+ 6a 2 [~rko2(D~ + �89 ] - 3~2(1 + 3, 2) - 3/~ cos(~%t + { tan -1 3.) (44) 

I,(t) = 5a2(cv~ + �89 + $r2) -*/~ 

x cos(wpt + ~ tan -~ ~r) (45) 

where a s = k~S/12On~fl ~, 3 = o~v7/P , 3. = o~7/(I' + 2D.), and 3r = 
o~vT/(P + 2Dr), and all other symbols have been defined previously. Besides 
the mode coupling integrals I~ (i = I .... ,4), Eqs. (31)-(34) also depend on the 
value of the matrix elements (Ft(kz)] tl> and <F~(kz)I tp ~> and their transposed 
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counterparts. As Ft(kz) only depends on the regular collision operator 
ZR(kz), we can replace Ft(kz) by Ft(k, z = 0) in Eqs. (31)-(34) as far as the 
leading terms of their long-time behavior is concerned. Moreover, if, as here, 
we are only interested in the long-time behavior of the spatially local shear 
viscosity v(k = 0, t) we need to know these matrix elements only up to O(k). 
Comparing (Ft(kz)[t l)  with (24), we can write 

(Ft(kz) ltl) = - i ( k /a~2ag)~(kz )  (46) 

where 7/n rz~ is the total (=  kinetic + potential)-kinetic part of the shear vis- 
cosity, i.e., the contribution of the second term of Eq. (11) with Z~ deleted 
from the last (Zo + ~o) factor, calculated with the regular part of the col- 
lision operator. Finally, because of rotational invariance, the matrix element 
(F~(kz)] tp ~) is of O(k 2) and can be neglected here. 

4.5. The Asymptot ic  Shear Viscosi ty  

Using the definition (24) and the results of the previous sections, we can 
write down our final result for the nonlocal (in time) shear viscosity ~7(0t). 
Let us introduce g,/(t) = n(Ot) - nR(Ot), where ~n(0t) denotes the value of 
�9 /(0t) in the absence of the mode coupling terms, i.e., its regular or exponen- 
tially decaying part. We then obtain for 8~/(t) 

= ;~oJ~ 2 F - 3 / 2  (1 32)-3/4 cos(2c%t 3 3) 8~7(t ) T~-6 ~70((rrkD t ) [ 1 +  + + ~ t a n  -1 ] 

- 2 ~gr + ~ r  ('~kD2Ft)-a/2( 1 + ~2)-a/4 sin 2~%t + ~ tan -1 3 
~o 

K T T K  ( 3 1  ) 
- 4 ~ -  ~ -  (~'kD2Pt)-w~(1 + 82) -3/4 COS 2o~pt + ~ tan-  3 

~70 ~1o 

( - -  lrkD 2 D •  t (1 + 
~70 ~/0 

3 1 
• cos(oJpt + ~ t a n -  3•  (47) 

where ~ -- kD3/n is the plasma expansion parameter and % = nmoJp/kD 2 has 
the dimensions of a viscosity but is independent of the plasma parameter A. 
If we compare (47) with the long-time tail of the shear viscosity of a neutral 
fluid, (2) we can observe three major differences: (1) Except for the very first 
term of (47), all remaining contributions oscillate with a frequency oJ~ or 2o~p; 
(2) the coefficients of the tail are not purely thermodynamic; (3) the different 
terms do not have the same overall sign. The overall t - 3/2 decay of the neutral 
fluids is, however, recovered here also. Finally, the detailed dependence of  
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(47) on ~ is largely unknown but the overall amplitude of the oscillations 
should increase with the coupling A, as observed for the case of the self- 
diffusion in Ref. 8, while the first term of (47) should be the leading contribu- 
tion for small h as assumed in Ref. 19. 

Recently, (28) it has been shown that because of the Coulomb singularity 
the one-component plasma can show hydrodynamic behavior only in the 
limit of strong coupling. This could explain the appearance of the non- 
hydrodynamic quantity v~:~" in our two-mode coupling result (47). The con- 
jecture we make is that in the limit of strong coupling, higher order mode 
coupling contributions will come into play which eventually yield a hydro- 
dynamic expression for 3~/(t). However, this remains to be shown. 

5. D ISCUSSION 

Starting from first principles we have initiated in fairly simple terms a 
detailed study of the long-wavelength, long-time behavior of a classical one- 
component plasma for arbitrary coupling constant A = kD3/n. After recalling, 
in Section 2, the small-k, large-t expression of the hydrodynamic correlation 
functions G~j(kt) (i and j = 1 .... ,5) obtained previously, (~) we have studied 
the feedback effect of these hydrodynamic propagators onto themselves 
through their influence on the transport matrix ~j(kt) ,  which governs the 
evolution of the G~s through Eq. (3). The full transport matrix ~ j  was 
separated rigorously into a regular and a singular part in Section 3. Here we 
have introduced our major approximation by assuming that the leading 
singularity of ~j(kz) or leading long-time behavior of ~)~j(kt) is due to the 
coupling of two hydrodynamic propagators. This contribution was seen to 
originate from the disconnected part of the nonlocal collision operator Z5 
of Eq. (15), which by itself represents a major improvement over the standard 
BGL operator. Within this general framework we have analyzed in Section 4 
the long-time behavior of the nonlocal shear viscosity v(k = 0, t). An oscil- 
latory long-time tail was revealed, which is displayed in Eq. (47). Although 
not completely unexpected here, (2~ such a slow, long-time decay has some 
interesting consequences, which we will now briefly review. 

5.1. Nonexistence of a Naive Gradient Expansion of the 
Hydrodynamic Equations 

The nonlocal transport equation (23) together with the definition (24) 
can be written as a generalized or nonlocal transverse Navier-Stokes equation: 

f2 OtG• t) + (k2/nm) dr ~/(k, -)Us(k, t - .) = 0 (48) 
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In the limit of small gradients we can expand the nonlocal kernel as 

d ,  ~7(k, r)Ga(k, t - z) = dr [ ( -  r)n/n [1, n(k, ~-) Ot~G• t) (49) 
0 

and compute ~t~G• t) from Eq. (48). Since, according to Eq. (48), ~tG• ~" 

O(k2), we generate in this way through the rhs of Eq. (49) a small gradient 
expansion of the transport equation (48). If we also take the long-time limit 

g dr r~7(r)~ fo  dr zn~(r), then the first term yields exactly the usual or 

local transverse Navier-Stokes equation: 

OtG.(k, t) + (k2/nrn)~TG• t) = 0 (50) 

with a shear viscosity ~7 defined as ~7 = 5o dr ~7(k --- 0, ~-). It was generally 

believed that by pushing this small-k, large-t expansion further, one could 
generate hydrodynamic equations containing higher order gradients, i,e., 
the so-called Burnett [~ O(ka)] and super-Burnett [~ O(k~)] terms. Because 
of the slow decay of, for instance, ~7(0t) ~ O(t-3~2), this expansion breaks 

down [for example, fo dr r~(0r) = oo] and the super-Burnett correction to 

Eq. (50) does not exist. One then has to refrain from a local description and 
use, for example, time-dependent transport coefficients. (26~ This will thus also 
be the case for the one-component plasma. 

5.2. Nonana ly t ic i ty  of  the Shear  M o d e  

Instead of looking at the hydrodynamic equation (48) obeyed by G• t), 
one can also look directly at the solution of Eq. (48): G•  
i[z + i(k2/nm)~(kz)]-1. The time behavior of G• t) is then governed by 
the solutions of the dispersion equation: 

z = - i(k2/nm)~l(kz) (51) 

The shear mode can then be defined as the solution z = z(k) of Eq. (51) that 
vanishes with k, z(k = 0) = 0. For small k we recover from Eq. (51) the 
usual shear mode z = - (ik2/nm)~ with ~7 = ,/(k = 0, z = 0). It was generally 
believed that the small-k or Enskog expansion (2~ of the shear mode would 
yield a result of the form z = -i(k2/nm)~7(1 + k2~72 + ...), i.e., an analytic 
expansion in k z [because of rotational symmetry, (27~ ~(kz) only depends on 
k2]. However, as has been shown recently, c2"26~ the slow decay properties of 
~7(t) result in a nonanalytic behavior of ~(kz) for small z and k [Eq. (47), for 
example, implies that 3~7(z ) ~ O(z 1/2) for small z]. Hence, the Enskog expan- 
sion of the hydrodynamic modes will in general be nonanalytic in k or k 2 
(according to the symmetry properties of the mode considered). Therefore 
the higher order corrections to the Navier-Stokes equation will also be 
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nonanalytic in the gradients. Finally, since the dispersion equation (51) is 
also nonanalytic in z for small z, its inversion will yield cut contributions to 
G• A detailed study of this wilderness of correction terms is now under- 
way for neutral particle fluids. (26~ For the plasma case we have shown ~19~ that 
the Enskog expansion of the shear mode can be written 

z = -i(k2/nm)~7(1 + k~l  + ""), 

i.e., a nonanalytic expansion in kL We will come back to this problem in 
future work. Here we only want to point out that the reason why the singu- 
larities appear to be weaker in the plasma case compared with neutral fluids, 
where z = -i(k2/nm)~(1 + k~/2~7~i~ + ...), can be completely ascribed to the 
absence Of sound modes in the one-component plasma. 

5.3. Nonanalyt ic i ty  of the Kinetic Equation 

The slow decay properties of the transport matrix fl~j(kt) due to the 
persistence of the hydrodynamic fluctuations over long time intervals are 
thus seen to lead to some interesting consequences at the macroscopic level. 
The same hydrodynamic propagators also appear i n  the collision operator 
itself, as explicitly displayed in Eq. (20). Hence the difficulties mentioned in 
Sections 5.1 and 5.2 are bound to manifest themselves also at the microscopic 
level of the kinetic equation (1). In the plasma case it is not possible to perform 
a small gradient expansion of the kinetic equation (1) because of the presence 
of a singular mean field term in (1). Let us consider, therefore, the space- 
integrated fluctuations S(plP2; t) = S(k = 0, t; PIP2), in which case Eq. (1) 
reduces exactly to 

~tS(plp2; t) + d'r dpz EC(pzp8 ; r)S(p3p2 ; t - r) = 0 (52) 

with Ec(plp2; t) -= EC(k = 0, t; P~P2)- Notice that at k = 0 the free flow term 
(~0) and mean field term (E 8) drop out exactly from Eq. (1). Equation (52) 
now is equivalent to the exact (linearized) kinetic equation for the non- 
equilibrium velocity distribution, which for small plasma coupling constants 
~t = kD3/n reduces to the linearized BGL equation when the Markovian long- 
time limit of (52) is considered. This Markovian limit can be obtained from 
(52) by an expansion similar to (49): 

fotd. ZCc(~')S(t - ~') = L (f~ d~- [(--dn/n!]Y~(~)} Ot~S(t) (53) 

where we have left out unnecessary features. It is clear from (53) that the 
existence of a Markovian kinetic equation in the limit of long times will 
depend on the existence of the moments of the collision operator, 
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f~ dr r'Ec(~-), as t tends to infinity. Clearly, if Y,c(t) displays the same slow, 

long-time decay properties as those of the transport  matrix f2~j(k, t), then the 
expansion (53) will break down somewhere in the Markovian limit t - +  oo. 
In fact it is already obvious from Eqs. (19) and (20) that the decay properties 
of No(t) are similar to those of f2~j(t) and hence that the series expansion in 
(53) will diverge in the Markovian long-time limit. This can be phrased 
differently by observing that if one naively expands the Markovian kinetic 
equation in powers of the plasma parameter ;~, the higher order terms in the 
series (53) are bound to appear and hence this h expansion will also diverge. 
This divergence of a naive expansion of the Markovian kinetic equation will 
probably appear if one goes beyond the O(h 2) kinetic equation. This diver- 
gence then is the plasma analog of the divergence of the density expansion 
for neutral fluids. (2~ 

These, then, are in our view the major  implications of  the slow decay 
properties of the nonlocal collision operator ZC(kt) and nonlocal transport 
matrix ~ j ( k t )  as due to the hydrodynamic transport  of  the fluctuations in 
a one-component plasma. More detailed considerations on some of the 
problems alluded to above are deferred to future work. 
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